Equal sums of like polynomials

نویسنده

  • T. D. Browning
چکیده

Let f ∈ Z[x] be a polynomial of degree d. We establish the paucity of non-trivial positive integer solutions to the equation f(x1) + f(x2) = f(x3) + f(x4), provided that d ≥ 7. We also investigate the corresponding situation for equal sums of three like polynomials. Mathematics Subject Classification (2000): 11D45 (11P05)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Polynomial Sieve and Equal Sums of like Polynomials

A new “polynomial sieve” is presented and used to show that almost all integers have at most one representation as a sum of two values of a given polynomial of degree at least 3.

متن کامل

Nonnegative Polynomials and Sums of Squares

A real polynomial in n variables is called nonnegative if it is greater than or equal to 0 at all points in R. It is a central question in real algebraic geometry whether a nonnegative polynomial can be written in a way that makes its nonnegativity apparent, i.e. as a sum of squares of polynomials (or more general objects). Algorithms to obtain such representations, when they are known, have ma...

متن کامل

1 7 Ja n 20 05 Branching rules , Kostka - Foulkes polynomials and q - multiplicities in tensor product for the root systems

The Kostka-Foulkes polynomials K λ,μ(q) related to a root system φ can be defined as alternated sums running over the Weyl group associated to φ. By restricting these sums over the elements of the symmetric group when φ is of type Bn, Cn orDn, we obtain again a class K̃ φ λ,μ(q) of Kostka-Foulkes polynomials. When φ is of type Cn or Dn there exists a duality beetween these polynomials and some n...

متن کامل

2 00 4 Branching rules , Kostka - Foulkes polynomials and q - multiplicities in tensor product for the root systems

The Kostka-Foulkes polynomials K λ,μ(q) related to a root system φ can be defined as alternated sums running over the Weyl group associated to φ. By restricting these sums over the elements of the symmetric group when φ is of type Bn, Cn orDn, we obtain again a class K̃ φ λ,μ(q) of Kostka-Foulkes polynomials. When φ is of type Cn or Dn there exists a duality beetween these polynomials and some n...

متن کامل

CLOSURE OF THE CONE OF SUMS OF 2d-POWERS IN CERTAIN WEIGHTED `1-SEMINORM TOPOLOGIES

In [3] Berg, Christensen and Ressel prove that the closure of the cone of sums of squares ∑R[X]2 in the polynomial ring R[X] := R[X1, . . . , Xn] in the topology induced by the `1-norm is equal to Pos([−1, 1]n), the cone consisting of all polynomials which are non-negative on the hypercube [−1, 1]n. The result is deduced as a corollary of a general result, also established in [3], which is vali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005