Equal sums of like polynomials
نویسنده
چکیده
Let f ∈ Z[x] be a polynomial of degree d. We establish the paucity of non-trivial positive integer solutions to the equation f(x1) + f(x2) = f(x3) + f(x4), provided that d ≥ 7. We also investigate the corresponding situation for equal sums of three like polynomials. Mathematics Subject Classification (2000): 11D45 (11P05)
منابع مشابه
The Polynomial Sieve and Equal Sums of like Polynomials
A new “polynomial sieve” is presented and used to show that almost all integers have at most one representation as a sum of two values of a given polynomial of degree at least 3.
متن کاملNonnegative Polynomials and Sums of Squares
A real polynomial in n variables is called nonnegative if it is greater than or equal to 0 at all points in R. It is a central question in real algebraic geometry whether a nonnegative polynomial can be written in a way that makes its nonnegativity apparent, i.e. as a sum of squares of polynomials (or more general objects). Algorithms to obtain such representations, when they are known, have ma...
متن کامل1 7 Ja n 20 05 Branching rules , Kostka - Foulkes polynomials and q - multiplicities in tensor product for the root systems
The Kostka-Foulkes polynomials K λ,μ(q) related to a root system φ can be defined as alternated sums running over the Weyl group associated to φ. By restricting these sums over the elements of the symmetric group when φ is of type Bn, Cn orDn, we obtain again a class K̃ φ λ,μ(q) of Kostka-Foulkes polynomials. When φ is of type Cn or Dn there exists a duality beetween these polynomials and some n...
متن کامل2 00 4 Branching rules , Kostka - Foulkes polynomials and q - multiplicities in tensor product for the root systems
The Kostka-Foulkes polynomials K λ,μ(q) related to a root system φ can be defined as alternated sums running over the Weyl group associated to φ. By restricting these sums over the elements of the symmetric group when φ is of type Bn, Cn orDn, we obtain again a class K̃ φ λ,μ(q) of Kostka-Foulkes polynomials. When φ is of type Cn or Dn there exists a duality beetween these polynomials and some n...
متن کاملCLOSURE OF THE CONE OF SUMS OF 2d-POWERS IN CERTAIN WEIGHTED `1-SEMINORM TOPOLOGIES
In [3] Berg, Christensen and Ressel prove that the closure of the cone of sums of squares ∑R[X]2 in the polynomial ring R[X] := R[X1, . . . , Xn] in the topology induced by the `1-norm is equal to Pos([−1, 1]n), the cone consisting of all polynomials which are non-negative on the hypercube [−1, 1]n. The result is deduced as a corollary of a general result, also established in [3], which is vali...
متن کامل